Новые технологии медицины презентация. Инновационные фундаментальные технологии в медицине - презентация

Медицинская информатика Информационные процессы присутствуют во всех
областях медицины и здравоохранения. От их
упорядоченности зависит четкость функционирования
отрасли в целом и эффективность управления ею.

Классификация медицинских информационных систем

Ключевым звеном в информатизации здравоохранения является
информационная система.
Классификация медицинских информационных систем основана на
иерархическом принципе и соответствует многоуровневой структуре
здравоохранения. Различают:
1. медицинские информационные системы базового уровня
2. медицинские информационные системы уровня лечебнопрофилактических учреждений.
3. медицинские информационные системы территориального уровня.
4. федеральный уровень, предназначенные для информационной
поддержки государственного уровня системы здравоохранения.

Медицинские приборно-компьютерные системы

Медицинские приборнокомпьютерные системы
Важной разновидностью специализированных медицинских
информационных систем являются медицинские приборнокомпьютерные системы (МПКС).
В МПКС можно выделить три основные составляющие:
медицинское, аппаратное и программное обеспечение.
Применительно к МПКС медицинское обеспечение включает в
себя способы реализации выбранного круга медицинских задач,
решаемых в соответствии с возможностями аппаратной и
программной частей системы.

Медицинская диагностика

Разработка и внедрение информационных систем в области медицинских
технологий является достаточно актуальной задачей. Анализ применения
персональных ЭВМ в медицинских учреждениях показывает, что компьютеры
в основном используются для обработки текстовой документации, хранения и
обработки баз данных, статистики. Часть ЭВМ используется совместно с
различными диагностическими и лечебными приборами. В большинстве этих
областей использования ЭВМ применяют стандартное программное
обеспечение – текстовые редакторы, СУБД и др. Поэтому создание
информационной организационно-технической системы, способной
своевременно и достоверно установить диагноз больного и выбрать
эффективную тактику лечения, является актуальной задачей
информатизации.

Системы для проведения мониторинга

Задача оперативной оценки состояния пациента возникает в ряде
весьма важных практических направлений в медицине и в первую
очередь при непрерывном наблюдении за больным в палатах
интенсивной терапии, операционных и послеоперационных
отделениях.
В этом случае требуется на основании длительного и непрерывного
анализа большого объема данных, характеризующих состояние
физиологических систем организма обеспечить не только оперативную
диагностику осложнений при лечении, но и прогнозирование состояние
пациента, а также определить оптимальную коррекцию возникающих
нарушений.

Системы управления лечебным процессом

К системам управления процессами лечения и реабилитации относятся
автоматизированные системы интенсивной терапии, биологической
обратной связи, а также протезы и искусственные органы, создаваемые
на основе микропроцессорной технологии.
Один из главных путей решения ряда медицинских, социальных и
экономических проблем в настоящее время представляет
информатизация работы медицинского персонала. К этим проблемам
относиться поиска действенных инструментов, способных обеспечить
повышение трех важнейших показателей здравоохранения: качества
лечения, уровня безопасности пациентов, экономической
эффективности медицинской помощи. Базовым звеном
информатизации является использование в больницах современных
клинических информационных систем, снабженных механизмами
поддержки принятия решений.

Телемедицина

Телемедицина - это комплекс современных лечебнодиагностических методик, предусматривающих дистанционное
управление медицинской информацией.
Возникновение телемедицины обычно связывают с врачебным
контролем при космических полетах. Первоначально это было
измерение показателей жизнедеятельности у животных на
космических аппаратах, затем у космонавтов.

Требования к информационным системам в медицине

Ученые говорят, что место информационной системы
на предприятии такое же, как у нервной системы в
организме человека. Подобно тому, как здоровье
человека в значительной степени зависит от
состояния его нервной системы (известно, что все
болезни – «от нервов»), так и жизнеспособность
предприятия во многом зависит от его
информационной системы.

Информационное обеспечение любого предприятия постоянно
развивается - это закон.
Систему можно представить как здание, в фундамент которого
мы закладываем информационную среду, программные
продукты и материально-техническое обеспечение,
включающее в себя ПК, серверы, локальную сеть, приборы. На
этот фундамент нагружается информация, увеличивающееся
количество пользователей и разрастающаяся
функциональность.
следует обращать внимание на то, какая БД используется в
приложении и в какой среде разработки она сделана.

Слайд 2

Информационные технологии в современном обществе

В современном обществе немыслима подготовка медицинских кадров без применения информационных технологий, предлагающих средства и приемы для решения поставленных медицинских задач. Мир переживает настоящий компьютерный бум. Персональные компьютеры прочно входят в нашу жизнь и становятся вещью первой необходимости. Жизнь миллионов людей не мыслима без "персоналки" и медицина на данном этапе развития уже не может обойтись без "электронного помощника". Возможности которые предоставляет ПК, рано или поздно станут такими же как стетоскоп, и их придется осваивать.

Слайд 3

В настоящее время сотрудники медицинских учреждений сталкиваются с огромными объемами информации. От того насколько эффективно эта информация используется медицинскими работниками зависит качество медицинской помощи, общий уровень жизни населения, уровень развития страны в целом и каждого ее территориального субъекта в здравоохранении.

Слайд 4

Слайд 5

До недавнего времени в российском здравоохранении почти полностью отсутствовали хоть какие-то признаки автоматизации. Карты, бюлле- тени, процедурные отчеты, учет пациентов, лекарственных препаратов – весь документо- оборот производился на бумаге. Это сказывалось на скорости, а следовательно и качестве обслу- живания пациентов, затрудняло работу врачебного, медицинского персонала, что вело к большим затратам времени на заполнение карт, составление отчетов.

Слайд 6

На смену эпохе бумажных носителей информации приходят современные информационные технологии, которые позволят вывести работу ЛПУ на качественно новый уровень, повысить эффективность работы врачей-специалистов и немеди- цинских служб, обеспечить лояльность медицинского персо- нала и рост удовлетворенности пациентов.

Слайд 7

Информатика и информационные технологии играют все более значительную роль в профессиональной деятельности медицинского работника. Информационные технологии применяются в медицинском образовании, медицинских исследованиях, медицинской практике. Информационные технологии предполагают умение грамотно работать с информацией и вычислительной техникой.

Слайд 8

Медицинские организации активно внедряют автоматизированные информационные системы. Такие системы позволяют создавать информационную базу и вести единую базу пациентов, которая включает всю информацию о проводимой диагностике и лечении. Повышается эффективность труда медицинского персонала т.к. многие механические операции выполняются автоматически (выдача справок, отчетов, результатов анализов и т.д.), сокращаются трудозатраты медицинского персонала.

Слайд 9

Информационные технологии позволяют обеспечить комплексный анализ данных и оптимизацию решений при диспансеризации, обследовании, диагностике, прогнозировании течения заболеваний.

Слайд 10

Задачи решаемые с помощью ПК

  • Слайд 11

    Развитие информационных технологий в медицине неизбежно, а поэтому студенты медицинский колледжей и ВУЗов должны понимать, что современный специалист должен владеть знанием ПК. Современному медицинскому работнику необходимо предпринять все усилия по освоению компьютерных технологий. Подготовка медицинских кадров сегодня немыслима без применения информационных технологий, предлагающих средства и приемы для решения медицинских задач.

    Слайд 12

    Основной целью применения информационных методов в профессиональной деятельности медицинского работника является оптимизация информационных процессов в медицине за счет использования компьютерных технологий, обеспечивающая повышение качества охраны здоровья населения.

    Слайд 13

    Виды применяемых информационных технологий классифицируются по следующим задачам:

    1. Обработка текстовых медицинских документов. 2. Математическое моделирование в медицине (технологии обработки чисел). 3. Создание и работа с информационными системами (технологии обработки данных). 4. Создание мультимедийных продуктов (мультимедиа-технологии). 5. Использование служб Интернета в практике медработника (сетевые технологии).

    Слайд 14

    Стратегическими ориентирами в формировании информационной культуры студентов медицинских колледжей и ВУЗов становятся:

    повышение профессиональной компетентности; умение работать в информационно-образовательной среде; толерантность, коммуникабельность, способность к сотрудничеству; готовность к самообразованию на протяжении всей жизни; умение применять полученные знания в области информационной культуры а практической деятельности.

    «Образовательные технологии в школе» - Здоровьесберегающие технологии. Коллективная система обучения. Повышение квалификации педагогов школ по проблеме внедрения технологий. Снижение количества второгодников. Повышение ответственности за результаты образовательной деятельности. Проблемное обучение. Технология развития критического мышления.

    «Физика в медицине» - Рентгеновские лучи. Раны после операции заживают быстрее. Физика. Рентгеновские лучи открыл немецкий физик Вильгельм Рентген (1845 – 1923). Физика помогает диагностике заболеваний. Использование лазеров в хирургии. Использование лазера в микрохирургии глаза. Мощный лазерный пучок соответствующего диаметра уничтожает злокачественную опухоль.

    «Химия в медицине» - Снотворные средства Снотворные средства угнетающе влияют на передачу возбуждения в головноммозге. Хлебные изделия. Перец. Мясо. Химия. Яйцо. Введение. Витамин «А» - Ретинол. Витамин «D» - Кальциферол. Молоко. Злаки. Позже идею линз высказывал Декарт. К антибактериальным химиотерапевтическим средствам в первую очередь относятся сульфаниламидные препараты и антибиотики.

    «Программа по технологии» - Обоснование выбора объектов труда для проектирования швейных изделий. Примерка околыша. Методические рекомендации для учителя по проектированию поварского колпака. Причины разработки рабочей программы. Художественная обработка древесины -7 кл. Результаты апробации программы. Учимся составлять композиции с применением ИКТ.

    «Технологии на уроках истории» - Результаты муниципального тура Всероссийской олимпиады по истории. Внедрение информационно-коммуникационных технологий в образовательный процесс. Результативность применения проектно-исследовательской технологии. Использование Интернет-ресурсов в проектно -исследовательской работе учащихся. Обществознание.

    «Образовательные технологии» - Метакогнитивные, рефлексивные технологии. Важнейшей функциями фазы вызова являются: Информационная. Схема технологического построения учебного процесса. Портфолио. Технология развития критического мышления. Фаза вызова. Функции стадии рефлексии. Когнитивные и метакогнитивные умения. Образовательные технологии.


    Чтобы продемонстрировать плачевное состоянии медицины в Молдавии, тамошние медики создали видео, на котором якобы проводят операцию на ребенке при помощи строительной дрели и ржавых кусачек. И это на фоне того, как в развитых странах с каждым днем появляются все новые еще более точные и и технологии . Десятку самых интересных из них посвящен этот обзор.



    Американские исследователи из Бостона придумали способ, позволяющий человеку прекрасно обходиться без необходимости дышать воздухом. Достаточно лишь одной инъекции, чтобы в течение получаса ваш организм был в достаточной степени обеспечен кислородом. Это позволит избавиться от процедуры трахеотомии и будет весьма полезно в медицине катастроф и военно-полевой хирургии.




    Шведские ученые придумали способ, как превратить обычный DVD-проигрыватель в универсальную медицинскую лабораторию. Оказывается, лазер для считывания диска можно использовать для анализа крови на разные составляющие, проверки ДНК, а также поиска вируса иммунодефицита человека в представленных образцах.




    Ученые создали прибор с названием Scanadu, который является реальным воплощением известного по телесериалам и фильмам «Звездный Путь» трикодера. Этот небольшой инструмент позволит в считанные секунды определять температуру тела человека, его кровяное давление, показания электрокардиограммы, частоту сердечных сокращений и дыхания, а также количество кислорода в крови.




    Израильская компания Tikun Olam засеяла несколько полей на севере страны генетически модифицированной коноплей, которая не приводит к наркотическому опьянению, зато поможет врачам и больным в лечении рака, болезни Паркинсона, рассеянного склероза, посттравматического стрессового расстройства и некоторых других недугов.




    Кстати, о конопле. В некоторых штатах США производные из этого растения вполне можно употреблять в медицинских целях, к примеру, для улучшения настроения при депрессиях или избавления от боли при раке. Это лечебное средство стало настолько популярным, что появился даже специальный автомат Autospense, торгующий им. Правда, при совершении покупки нужно не только оплатить товар, но и указать уникальный цифровой код, полученный от лечащего доктора.




    3D-принтеры появились в широкой доступности всего несколько лет назад, но уже сейчас их вовсю применяют не только ученые, инженеры и дизайнеры, но и медики, которые с помощью этих технологий создают протезы и имплантаты, заменяющие ампутированные части тела и даже кости.




    Белье Smart-E-Pants создано для лежачих больных, у которых есть риск возникновения пролежней. Каждые десять минут оно будет посылать электрический импульс, который заставит мышцу сократиться. И не важно, что эта часть тела у человека давно парализована.




    Исследовательская группа 2AI Labs создала очки O2amp, которые позволяют определить насыщение кожи человека кислородом, концентрацию гемоглобина в его крови и частоту сердцебиения. Они также помогут найти вены под кожей, выявить внутренние и поверхностные травмы, а также некоторые виды болезней.




    Голландские ученые из Radboud Universiteit Nijmegen создали гель, который при нагревании не плавится, а, наоборот, застывает, что делает его похожим на нитевидные белковые структуры. Данную субстанцию можно использовать при травмах для остановки кровотечений и временного «ремонта» поврежденных органов, что позволит человеку дожить до операции.




    Da Vinci – это робот, который не сможет сыграть на гитаре, как об этом мечтали создатели фильма «Гостья из будущего», зато без труда проведет самые сложные медицинские операции. Правда, под управлением живого человека, который будет сидеть за стоящим рядом пультом управления дроидом. Этот сложный механизм позволит автоматизировать многие процессы и проводить максимально точно и уверенно даже самые мельчайшие манипуляции.


    Краснотурьинский филиал

    ГБПОУ «СОМК»

    ЕН.02 Информационные технологии в профессиональной деятельности

    Информационные технологии в медицине

    Бояринова О.В., преподаватель


    1. Медицинская информатика

    3. Пути развития медицинских информационных систем


    1. Медицинская информатика

    Информационные процессы присутствуют во всех областях медицины и здравоохранения. От их упорядоченности зависит четкость функционирования отрасли в целом и эффективность управления ею. Информационные процессы в медицине рассматривает медицинская информатика.

    Медицинская информатика это наука, занимающаяся исследованием процессов получения, передачи, обработки, хранения, распространения, представления информации с использованием информационной техники в медицине и здравоохранении.


    • Предметом изучения медицинской информатики являются информационные процессы, сопряженные с медико-биологическими, клиническими и профилактическими проблемами.
    • Объект изучения медицинской информатики – это информационные технологии, реализуемые в здравоохранении.
    • Основной целью медицинской информатики является оптимизация информационных процессов в медицине и здравоохранении за счет использования компьютерных технологий, обеспечивающая повышения качества охраны здоровья населения.

    Медицинская информация – это любая информация, относящаяся к медицине, а в персонифицированном смысле – информация, относящаяся к состоянию здоровья конкретного человека

    Виды медицинской информации

    (Г.И. Назаренко)

    • Алфавитно-цифровая – большая часть содержательной медицинской информации (все печатные и рукописные документы);
    • Визуальная (статистическая и динамическая) – статистическая – изображения (рентгенограммы и т.д.), динамическая – динамические изображения (реакция зрачка на свет, мимика пациента и др.);
    • Звуковая – речь пациента, флоуметрические сигналы, звуки при допплеровском исследовании и т.д.);
    • Комбинированная- любые комбинации описанных групп.

    Основные проблемы, решаемые компьютеризированными системами в здравоохранении

    • Мониторинг состояния здоровья разных групп населения, в том числе пациентов групп риска и лиц с социально значимыми заболеваниями;
    • Консультативная поддержка в клинической медицине (диагностика, прогнозирование, лечение) на основе вычислительных процедур или моделирования логики принятия решения;
    • Переход к электронным историям болезни и амбулаторным медицинским картам, включая расчеты по лечению застрахованных больных;
    • Автоматизация функциональной и лабораторной диагностики;
    • Переход к комплексной автоматизации медицинских учреждений (включение АРМов врачей в информационные системы);
    • Получение сведений из АСУ учреждения для федеральных регистров по отдельным социально значимым видам патологии, для областных и городских регистров – по различным контингентам;
    • Создание единого информационного медицинского пространства клинических данных для оперативного принятия адекватных лечебно-диагностических решений;
    • «Прозрачность» для лечащего врача данных пациента за любой период времени, их доступность в любое время при обращении к БД глобальной медицинской сети;
    • Возможность дистанционного диалога с коллегами.

    История компьютеризации отечественного здравоохранения

    Информатика внедрялась в медицину с нескольких относительно независимых направлений, главными из которых являлись:

    • лаборатории и группы, занимающиеся медицинской кибернетикой;
    • производители медицинской аппаратуры;
    • медицинские информационно-вычислительные центры;
    • сторонние организации, занимающиеся автоматизацией управленческой деятельности;
    • руководители медицинских учреждений, самостоятельно внедрявшие новую технологию.

    Процесс внедрения вычислительной техники в учреждения здравоохранения нашей страны имеет почти полувековую историю.

    • В 1959 году в институте хирургии имени Вишневского была организована первая лаборатория медицинской кибернетики и информатики, а в 1961 году в этой лаборатории появилась ЭВМ, первая в медицинских учреждениях Советского Союза. Были организованы также лаборатории медицинской кибернетики в ряде институтов Академии Наук.
    • В 60-70 годы, подобными лабораториями располагали уже многие ведущие научно-исследовательские институты. ЭВМ стали более компактными и дешевыми, их общее число в стране превысило тысячу. Доступ к ним сотрудников медицинских учреждений упростился, возросло число решаемых с их помощью медицинских задач. Помимо статистической обработки данных, активно развиваются работы по консультативной диагностике и прогнозированию течения заболеваний.
    • В 70-80 годы ЭВМ стали доступными не только для научно-исследовательских институтов, но и для многих крупных клиник. Помимо проводившихся ранее работ появились первые автоматизированные системы профилактических осмотров населения; начались попытки совместить медицинскую аппаратуру с ЭВМ
    • Во второй половине восьмидесятых годов появились персональные компьютеры, и процесс компьютеризации медицины принял лавинообразный характер. Появилось большое количество разнообразных систем для функциональных исследований. руководители медицинских учреждений, самостоятельно внедрявшие новую технологию.

    • С начала 90-х годов произошла фактическая стандартизация средств вычислительной техники в здравоохранении. Основным типом ЭВМ стал персональный компьютер, совместимый с IBM PC, а операционной системой Windows.

    С появлением медицинского страхования начали активно внедряться соответствующие информационные системы. Для создания медицинской отчетности стали применять статистические информационные системы.

    Сегодня компьютеры стали неотъемлемым компонентом оснащения всех медицинских учреждений. Однако в большинстве случаев их возможности не используются в полной мере.

    Одной из причин этого является недостаточная обеспеченность аппаратно-программными средствами, особенно коммуникационными устройствами, что не позволяет наладить транспортировку данных и оперативное обеспечение ими всех специалистов учреждения.

    Другая причина, вероятно более значимая, видится в отсутствии у медицинских работников знаний и навыков, необходимых для работы с современными персональными компьютерами.


    2. Классификация медицинских информационных систем

    Ключевым звеном в информатизации здравоохранения является информационная система.

    Классификация медицинских информационных систем основана на иерархическом принципе и соответствует многоуровневой структуре здравоохранения.

    Различают:

    • МИС базового уровня;
    • МИС уровня лечебно-профилактических учреждений;
    • МИС территориального уровня;
    • МИС федерального уровня, предназначенные для информационной поддержки государственного уровня системы здравоохранения.

    Медицинские информационные системы базового уровня.

    МИС базового уровня – это системы информационной поддержки технологических процессов.

    Цель МИС базового уровня : компьютерная поддержка работы врача-клинициста, гигиениста, лаборанта и др.

    По решаемым задачам медико-технологические ИС разделяют на группы:

    • консультативно-диагностические системы;
    • приборно-компьютерные системы;
    • автоматизированные рабочие места специалистов.

    Назначение и классификация медицинских информационно-справочных систем.

    Особенность систем этого класса:

    • они не осуществляют обработку информации, а только предоставляют ее;
    • обеспечивают быстрый доступ к требуемым сведениям.

    Классификация:

    • по её характеру (первичная, вторичная, оперативная, обзорно-аналитическая);
    • по объектовому признаку (ЛПУ, лекарственные средства и др.);
    • по видам поиска (документальные, фактографические).

    Назначение и классификация медицинских консультативно-диагностических систем.

    Диагностика патологических состояний при заболеваниях различного профиля и для разных категорий больных, включая прогноз и выработку рекомендаций по способам лечения.

    По способу решения задач диагностики различают:

    • по видам хранимой информации (клиническая, научная, нормативно-правовая и т.д);
    • вероятностные (диагностика осуществляется реализацией одного из методов распознавания образов или статистических методов принятия решений);
    • экспертные (реализуется логика принятия диагностического решения опытным врачом).

    Назначение и классификация медицинских приборно-компьютерных систем.

    Информационная поддержка и автоматизация диагностического и лечебного процесса, осуществляемого при непосредственном контакте с организмом больного (например, при проведении хирургических операций с использованием лазерных установок или ультразвуковая терапия заболеваний пародонта в стоматологии).

    Классификация:

    • по функциональным возможностям (специализированные, многофункциональные, комплексные);
    • по назначению:
    • системы для проведения функциональных и морфологических исследований; мониторные системы; системы управления лечебным процессом и реабилитации; системы лабораторной диагностики; системы для научных медико-биологических исследований.
    • системы для проведения функциональных и морфологических исследований;
    • мониторные системы;
    • системы управления лечебным процессом и реабилитации;
    • системы лабораторной диагностики;
    • системы для научных медико-биологических исследований.

    Назначение и классификация АРМ специалистов.

    Автоматизация всего технологического процесса врача соответствующей специальности и обеспечение его информационной поддержки при принятии диагностических и тактических (лечебных, организационных и др.) решений.

    По назначению АРМы можно разделить на три группы:

    • АРМы лечащих врачей (терапевт, хирург, акушер-гинеколог, травматолог, офтальмолог и др.), к ним предъявляются требования, соответствующие врачебным функциям;
    • АРМы медработников парамедицинских служб (по профилям диагностических и лечебных подразделений);
    • АРМы для административно-хозяйственных подразделений.

    АРМы применяются не только на базовом уровне здравоохранения –клиническом, но и для автоматизации рабочих мест на уровне управления ЛПУ, регионом, территорией.


    Медицинские информационные системы уровня лечебно-профилактических учреждений.

    Системы этого класса предназначены для информационного обеспечения принятия как конкретных врачебных решений, так и организации работы, контроля и управления деятельностью всего медицинского учреждения. Эти системы, как правило, требуют наличия в медицинском учреждении локальной вычислительной сети и являются поставщиками информации для медицинских информационных систем территориального уровня.

    Выделяют следующие основные группы:

    • ИС консультативных центров;
    • банки информации медицинских учреждений и служб;
    • персонифицированные регистры;
    • скрининговые системы;
    • информационные системы лечебно-профилактического учреждения (ИС ЛПУ);
    • информационные системы НИИ и медицинских вузов.

    Назначение и классификация информационных систем консультационных центров.

    Обеспечение функционирования соответствующих подразделений и информационной поддержки врачей при консультировании, диагностике и принятии решений при неотложных состояниях.

    Классификация:

    • врачебные консультативно-диагностические системы служб скорой и неотложной помощи;
    • системы для дистанционного консультирования и диагностики неотложных состояний в педиатрии и других клинических дисциплинах.

    Банки информации медицинских учреждений и служб.

    п ерсонифицированные регистры (базы и банки данных).

    Это разновидность ИСС, содержащих информацию о прикрепленном или наблюдаемом контингенте пациентов на основе формализованной истории болезни или амбулаторной карты.


    Скрининговые системы.

    Скрининговые системы предназначены для проведения доврачебного профилактического осмотра населения, а также для врачебного скрининга для формирования групп риска и выявления больных, нуждающихся в помощи специалиста.

    ИС ЛПУ

    ИС ЛПУ – это информационные системы, основанные на объединении всех информационных потоков в единую систему и обеспечивающие автоматизацию различных видов деятельности учреждения.

    ИС для НИИ и вузов

    Решают три основные задачи: информатизацию процесса обучения, научно-исследовательской работы и управленческой деятельности НИИ и вузов.


    МИС территориального уровня – это программные комплексы, обеспечивающие управление специализированными и профильными медицинскими службами, поликлинической (включая диспансеризацию), стационарной и скорой медицинской помощью населению на уровне территории (города, области, республики).

    Медицинские информационные системы территориального уровня

    МИС федерального уровня предназначены для информационной поддержки государственного уровня системы здравоохранения России.

    ИС федерального уровня решают следующие задачи:

    1.​ мониторинга здоровья населения России;

    2.​ повышения эффективности использования ресурсов здравоохранения;

    3.​ ведения государственных регистров больных по основным (приоритетным) заболеваниям;

    4.​ планирования, организации и анализа результатов НИР и ОКР;

    5.​ планирования и анализа подготовки врачебных и педагогических кадров;

    6.​ учета и анализа материально-технической базы здравоохранения.


    3. Пути развития информационных медицинских систем

    В наше время информационные технологии проникли во все сферы человеческой жизнедеятельности, и здравоохранение не является исключением в этом плане, о чем свидетельствует Приказ Минздравсоцразвития России от 28.04.2011 г. № 364 "Об утверждении Концепции создания единой государственной информационной системы в сфере здравоохранения" в редакции Приказа Минздравсоцразвития России №348 от 12.04.2012.

    В 2011 году в России была утверждена Концепция создания ЕГИСЗ (Единой государственной информационной системы здравоохранения), основными целями которой являются:

    • информатизация процессов оказания медицинской помощи населению;
    • внедрение интегрированных электронных медицинских карт пациентов;
    • переход к онлайн-мониторингу ключевых показателей здоровья и улучшения управления отраслью здравоохранения на основании внедрения ИКТ-технологий.

    Положительные стороны формирования единой информационной среды:

    • приводит к большей прозрачности лечебно-диагностического процесса;
    • позволяет создавать и поддерживать банк данных, сопряженный с различными МИС;
    • дает врачам возможность доступа к различным экспертным системам постановки диагноза и лечения, получения полной информации о состоянии здоровья пациента на основании электронной карты больного, а также в определенных случаях уменьшать последствия возможного субъективизма оценки заболевания и необходимого лечения;
    • пациенты могут больше не опасаться утери данных или нечитабельного оформления результатов анализов, рецептов, записей хода лечения и назначенных процедур.

    Внедрение информационных технологий в медицине позволит:

    • организовать дистанционный мониторинг пациента, удаленное консультирование специалистами;
    • обеспечить доступность и оптимальность по времени для населения получения необходимых документов для оформления водительского удостоверения, трудоустройства и т.п.

    Внедрение технологий блокчейн для создания и развития единой базы ЭМК пациентов позволит:

    • обеспечить безопасность и целостность данных,
    • повысить уровень безопасности хранения информации;
    • сделать процесс внесения изменений в распределенную базу "прозрачным", исключая несанкционированный доступ к данным пациентов и манипулирование информацией в целях получения положительных медицинских заключений;
    • снизить коррупционные риски среди медицинских работников;
    • повысить защищенность персональных данных, качество медицинских данных и достоверность статистики.

    При использовании технологии блокчейн становится невозможным скрыть источник информации – любые изменения, вносимые в карту пациента с использованием блокчейна, идентифицируются и "привязываются" к лицу, вносившему изменения. Введенную ранее информацию удалить нельзя, и она также идентифицируется с лицом, вносившим эту информацию ранее.


    Проверь себя!

    • Какого уровня МИС не существует?
    • базовый; континентальный; территориальный; федеральный.
    • базовый;
    • континентальный;
    • территориальный;
    • федеральный.
    • Основная цель МИС базового уровня: поддержка работы врачей различных специальностей; поддержка работы поликлиник; поддержка работы стационаров; поддержка работы диспансеров.
    • поддержка работы врачей различных специальностей;
    • поддержка работы поликлиник;
    • поддержка работы стационаров;
    • поддержка работы диспансеров.
    • Справочник лекарственных средств относится к следующему типу медицинских информационных систем: приборно-компьютерные; информационно-справочные; обучающие; научные; региональные.
    • приборно-компьютерные;
    • информационно-справочные;
    • обучающие;
    • научные;
    • региональные.

    1 - b, 2 - a, 3 - b


    Проверь себя!

    • Для поиска и выдачи медицинской информации по запросу пользователя предназначены:
    • Мониторные системы и приборно-компьютерные комплексы; Системы вычислительной диагностики; Системы клинико-лабораторных исследований; Информационно-справочные системы; Экспертные системы, основанные на базах знаний.
    • Мониторные системы и приборно-компьютерные комплексы;
    • Системы вычислительной диагностики;
    • Системы клинико-лабораторных исследований;
    • Информационно-справочные системы;
    • Экспертные системы, основанные на базах знаний.
    • Прибор кардиоанализатор относится к следующему классу медицинских информационных систем (МИС): Приборно-компьютерные системы; Информационно-справочные системы; Автоматизированное рабочее место врача; МИС уровня ЛПУ; МИС федерального уровня.
    • Приборно-компьютерные системы;
    • Информационно-справочные системы;
    • Автоматизированное рабочее место врача;
    • МИС уровня ЛПУ;
    • МИС федерального уровня.

    4 - d, 5 - a


    Задание для внеаудиторной работы:

    • Оформить мультимедийную презентацию на тему «Автоматизированное рабочее место медицинского персонала»;
    • Описать, какие механизмы защиты персональных медицинских данных о пациенте реализованы в МИС.